Distributed systems

Total Order Broadcast

Prof R. Guerraoui
Distributed Programming Laboratory

» ’ .

W
« : -
P

Overview

~ Intuitions: what is total order broadcast?

~ Specifications of total order broadcast

~ Consensus-based total order algorithm

Broadcast

» ’ .

Intuitions (1)

~ In reliable broadcast, the processes are free
to deliver messages in any order they wish

- In causalbroadcast, the processes need to
deliver messages according to some order
(causal order)

~ The order imposed by causal broadcast is
however partial: some messages might be
delivered in different order by the processes

Reliable Broadcast

ml m2 m3
ml m?2
A I N By o
& T
/ m3 m?2 ml

p3 ‘ ‘ ‘

m3

Causal Broadcast
, ml m?2
nl m ‘ m?2 ‘ ‘
e\
p2 = "

m3 ml m2

p3 ‘ ‘ ‘

m3

» ’ .

W

Intuitions ‘(2)

~ In total order broadcast, the processes must
deliver all messages according to the same
order (i.e., the order is now total)

~ Note that this order does not need to respect
causality (or even FIFO ordering)

~ Total order broadcast can be made to respect
causal (or FIFO) ordering

'S

)

Total Order Broadcast (I)

m2 ml m3
b 1 ml m?2 ‘ ‘ ‘
\ \ m2 ml m3
" <
n3 / m2 ml m3

m3

'S

)

Total Order Broadcast (II)

ml] M2 m3

pl ml m?2 ‘ ‘ ‘
\ \ m] m2 m3

p2 ~1

m3

p3 / ml m2

m3

» ’ .

W
« A\

Intuitions (3)

~ A replicated service where the replicas need
to treat the requests in the same order to
preserve consistency

(we talk about state machine replication)

~ A notification service where the subscribers
need to get notifications in the same order

Modules of a process

indication

Applicaldons |
Tofial oreler Broaueast =" . oo

on | (R Relialble broageast
rallre deliector
Channels

» ’ .

W
« : -

Overview

~ Intuitions: what is total order broadcast?

~ Specifications of total order broadcast

~ Consensus-based algorithm

: P

| .

Total order broadcast (tob)

Events
» Request: <toBroadcast, m>
» Indication: <toDeliver, src, m>
o Properties:
e RB1, RB2, RB3, RB4
o JTotal order property

» ’ .

L.
« , .

Specification (I)

Validity. If pi and pj are correct, then every message
broadcast by pi is eventually delivered by pj

No duplication: No message is delivered more than once

No creation: No message is delivered unless it was
broadcast

(Uniform) Agreement: For any message m. If a correct
(any) process delivers m, then every correct process
delivers m

Specification (II)

(Uniform) Total order
Let m and m’ be any two messages.

Let pi be any (correct) process that delivers m
without having delivered m’

Then no (correct) process delivers m’ before m

Specifications

Note the difference with the following properties:

Let pi and pj be any two correct (any) processes that deliver
two messages m and m’. If pi delivers m’ before m, then pj
delivers m’ before m.

Let pi and pj be any two (correct) processes that deliver a
message m. If pi delivers a message m’ before m, then pj
delivers m’ before m.

» ’ .

W
« : -
P

Overview

~ Intuitions: what total order broadcast can bring?
~ Specifications of total order broadcast

~ Consensus-based algorithm

W

5 4
« ’ v -
-

(Uniform) Consensus

In the (uniform) consensus problem, the
processes propose values and need to agree on
one among these values

C1. Validity. Any value decided is a value proposed

C2. (Uniform) Agreement: No two correct (any)
processes decide differently

C3. Termination: Every correct process eventually
decides

C4. Integrity. Every process decides at most once

Consensus

- Events
» Request: <Propose, v>
» Indication: <Decide, v'>
o Properties:
e C1,C2 C3 C4

Modules of a process
T T indication

Annlications -
T@& rtler broadeast ...

@@ SENSUS | U Refedie broaiss!

Pallire aistacton
Channels

» ’ .

Algorithm

- Implements: TotalOrder (to).

- Uses:

¢ ReliableBroadcast (rb).

¢ Consensus (cons);
~upon event < Init > do

~ unordered: = delivered: = J;
- wait := false;

sn:=1;

» ’ .

W
« Al

Algorithm (cont’d)

upon event < toBroadcast, m> do

» trigger < rbBroadcast, m>;

- upon event <rbDeliversm,m> and (m ¢ delivered)
do

» unordered := unordered U {(sm,m)};

- upon (unordered #) and not(wait) do
wait := true:
trigger < Propose, unordered>.,;

AIgorithfn (ébnt’d)

‘

“upon event <Decide,decided>, do

unordered := unorderec

 ordered := deterministicSort(decic
- for all (sm,m) in ordered:

\ decided:;

trigger < toDeliver,sm,m>;

delivered := delivered U {m};

sn:=sn+1;
wait := false;

/4

ed);

»
p ’ »
W
= 4
« . 4 -
-

Equivalences

1. One can build consensus with total order broadcast

2. One can build total order broadcast with consensus
and reliable broadcast

Therefore, consensus and total order
broadcast are equivalent problems in a
system with reliable channels

